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Numerical solutions of the variational equations for sandpile dynamics
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A variational form of the energy conservation equation is applied to derive a system of variational inequali-
ties describing the dynamics of sandpile growth on an arbitrary rigid support surface due to an external source
of granular material. Water transport through the river networks and formation of lakes is also investigated as
a limiting case of the sandpile evolution problem. A numerical algorithm is suggested for the solution of the
obtained system of variational inequalities. The developed numerical procedure is applied for the investigation
of the pile growth on a number of rigid support surfaces, water transport, and formation of lakes.
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PACS number~s!: 83.70.Fn, 46.10.1z, 05.60.1w
e

o
v
te
o
a
s
in
et
on
h
i.e
e
e
n

ilit
a
r-

b
m

tio
he
ta
ia
he
u
e
il
ns
ls
ob

u-
ith
ce

rial.
the

the
ry
rial
ity
e

the

res
rials
u-
for
in
lid
e of
a

tion

-

I. INTRODUCTION

The dynamics of sandpiles were studied quite extensiv
in the past, both theoretically and experimentally~see, e.g.,
Refs.@1–3#!. Most of these studies investigate the details
the pile surface relaxation near a stable configuration by a
lanches. Less attention was paid to the more complica
problem of determining the evolution of the mean surface
a pile growing on an arbitrary rigid support surface due to
external source of granular material. This problem arise
numerous technological applications and naturally occurr
phenomena, e.g., bulk solids handling, geomorphology,

The first successful continuum model of pile formati
that provides quantitative results was proposed by Prigoz
@4,5#. In these studies the inertial effects were neglected;
the system was driven by gravitational and frictional forc
only. The mathematical model of heap evolution was prov
to be a dual formulation of a time-dependent quasivariatio
inequality.

In spite of its elegance and mathematical irreproachab
this method has a limited range of applications. The inequ
ity used in@4,5# is a variational one only if the support su
face of the pile is inclined at an angle less than the angle
repose everywhere. In the opposite case, this inequality
comes a quasivariational inequality, which requires ti
consuming iterative treatment.

In @6# we suggested a more general variational descrip
of sandpile evolution based on the Hamilton principle of t
stationary action. The application of the principle of the s
tionary action allows one to derive a system of the var
tional inequalities describing sandpile evolution. In t
present investigation we developed a numerical proced
for the solution of these variational inequalities. The dev
oped procedure is applied for the investigation of the p
growth on a number of rigid support surfaces. Water tra
port through the river networks and formation of lakes is a
investigated as a limiting case of the sandpile evolution pr
lem.

*Electronic address: elperin@menix.bgu.ac.il
551063-651X/97/55~5!/5785~7!/$10.00
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II. A MODEL FOR SANDPILE GROWTH
ON AN ARBITRARY RIGID SUPPORT SURFACE

Generally the problem of the sandpile dynamics is form
lated as follows. Let a cohesionless granular material w
bulk densityr be poured down onto a rigid support surfa
with a profilez5h0(x,y), where (x,y)PV and forms a heap
with a free boundaryz5h(x,y). All the material lie above
the support surface, i.e.,

h>h0 , ~1!

The mass of the material that falls on the areadV during
time intervaldt is rw(t,x,y)dt dV, whererw(t,x,y) is the
surface density of the external source of granular mate
The problem is to determine the time dependence of
height of a granular pileh(t,x,y).

Assume that the intensity of the source is small. Then
flow of the granular material occurs only in a thin bounda
layer and does not involve the stationary bulk of the mate
@2#. Denote the horizontal projection of the mass flux dens
per unit area byrq̄ and the horizontal component of th
integral mass flux density per unit area byrQ̄, i.e., q̄
5]Q̄/]t.

In the present work we consider the simplest model of
ideal incompressible material with Coulomb friction law@7#.
It can be argued that such a restrictive assumption igno
most of the essential properties of the real granular mate
@1–3#. However, the concept of the ideal material with Co
lomb friction has been extensively used in engineering
almost two centuries. It plays the same fundamental role
the mechanics of granular media as the Hook’s law in so
mechanics. Therefore we believe that the analysis of a pil
granular material using the Coulomb friction law can form
basis for more general theory.

Since the bulk density is a constant, the mass conserva
law can be written as follows:

]h

]t
52¹W •qW 1w. ~2!

Assume that the domainV is bounded by the imperme
able boundaryG, i.e.,
5785 © 1997 The American Physical Society



el
s:

a
t t
ly
r

th

f

rit

ar
ith

-
ia

e.

an
u
t t

nly
of

rce

the
-
lso

the
ess

l-

ent
e-
re-
ect
e.

i-

5786 55T. ELPERIN AND A. VIKHANSKY
qnuG50. ~3!

Note that all the derivations are valid also for the complet
permeable boundary, i.e., for outflow boundary condition

h~ t,x,y!uG5h0uG .

Since the flow rate of the material is assumed to be sm
one can neglect the inertia of the grains and suppose tha
system is driven by gravitational and frictional forces on
The expression for the surface density of the potential ene
of the sandpile reads as follows:

U5rgE
0

h

z dz5
rg

2
h2,

whereg is the acceleration of gravity.
Assume that the equations for the surface density of

dissipation rate of energy in the pile read as follows:

«5rFW •qW ,

where the expression for the friction force per unit mass o

flowing granular layerFW will be specified below.

III. VARIATIONAL FORMULATION
FOR SANDPILE DYNAMICS

Using the synchronous variations of the pile heightdh

and of the horizontal component of the integral fluxdQW , the
variational form of the energy conservation law can be w
ten as follows~for details see@6#!:

rgE
V
h dh dV52rE

V
FW •dQW dV. ~4!

It is clear that the variationsdh anddQW are not indepen-
dent since the virtual material flux affects the free bound
of the pile. Rewriting the law of mass conservation w
respect to the variations we obtain

dh52¹W •dQW ~5!

Substituting Eq.~5! into Eq.~4! and using Gauss theorem
we arrive at the following equation of forces balance:

g¹W h52FW .

Determining the friction forceFW requires a detailed de
scription of the friction mechanisms in a granular mater
Such mechanisms were discussed in@8,9#, and it was con-
firmed that forces acting on a layer of sand sliding down
rough wedge correspond to the Coulomb-like friction; i.

FW }uW /uuu, whereuW is the velocity of granular material.
On the other hand, if the inertia of the granular flow c

be neglected, it is reasonable to assume that the gran
material slides in the direction of the steepest descent a
pile surface:

qW }2¹W h⇒FW }qW .
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It is known that the sandpile avalanches occur if and o
if the pile surface is inclined at an angle equal to the angle
reposea0 :

u¹W hu5tana05g.

Therefore it is reasonable to assume that the friction fo

FW is determined by the following equation:

FW 5gg
qW

uqu
,

which implies that¹W h52gqW /uqu and u¹W hu5g.
Note that the above equations are valid only ifh.h0 .

The situation when the granular material slides down
support surface, i.e., whenh5h0 , requires a special treat
ment. We assume that in this case the granular flow is a

parallel to¹W h:

qW •e•¹W h50 ~6!

where components of tensore in Cartesian coordinatese12
52e21521, e115e2250.

Suppose also that granular material does not slide at
part of the support surface which is inclined at the angle l
then the angle of repose:

qW 50 for u¹W hu,g.

SinceqW }2¹W h, the latter condition can be written as fo
lows:

qW •¹W h1guqu<0. ~7!

It is clear that the constraints~6! and ~7! are satisfied auto-
matically whenh.h0 .

IV. NUMERICAL ALGORITHM

In this section we demonstrate that the time depend
variational equation~4! can be solved by reduction to a s
quence of the steady-state minimization problems. We
strict our attention to the case that is continuous with resp
to the space variables and is discrete with respect to tim

After discretization in time Eq.~2! and the formula for

dQW at timekDt read as follows:

hk5hk211~w2¹W •qW k!Dt,

dQW k5dqW kDt. ~8!

Substitute Eqs.~8! into the variational equation~4!. Then
after simple manipulations we obtain the following minim
zation problem at timekDt:

E
V
H Dt

2
~¹W •qW k!

21guqW ku

2~hk211wDt !¹W •qW kJ dV→
qW
min, ~9!
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55 5787NUMERICAL SOLUTIONS OF THE VARIATIONAL . . .
which is to be solved under the constraints~1!, ~2!, ~6!, ~7!,
and ~8!.

It must be noted that the time incrementDt appears in the
expression for the functional~9! near the quadratic term
Therefore the time incrementDt multiplies the second orde
derivative in the Euler equations for the functional~9! @see
Eq. ~A1!, Appendix A#. WhenDt50 the Euler equation for
the functional ~9! yields the pile equilibrium condition

u¹W hk21u5g. The latter condition implies that the pile i
stable at the (k21)th time step. Therefore, in spite of th
small multiplier near the high order derivative, the Eu
equation is not singular since the small term}Dt in the
functional ~9! compensates the deviation from the equil
rium state caused by the arrival of the new portion of gra
lar material with massrwDt per unit surface.

Because of a very large number of variables the use of
classical gradient-type methods for solving the above m
mization problem is inappropriate. It was concluded in@10#
that a more effective approach is to employ a bloc
relaxation method that takes into account the particular st
ture of the problem to be solved. However, an essential
ficulty in applying a relaxation method arises from t
nondifferentiable termuqu. Note thatqW enters into the equa
tions not only through its absolute valueuqu but also through
its derivatives, i.e., nonlocally. In such a case a relaxat
procedure will not converge to the solution of the minimiz
tion problem@10#. In order to avoid this problem we intro
duce an additional variablepW (pW 5qW ), as done in@10# for the
investigation of the Bingham fluid flow. Replacing the ter
uqu by upu we obtain the following minimization problem:

F,E
V
H Dt

2
~¹W •qW k!

21gupW ku

2~hk211wDt !¹W •qW kdV→
qW ,pW

min, ~10!
hm
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f1,hk2hk212~w2¹W •qW k!Dt50, ~11!

f2,qW k•¹W hk1gupku1zk50, ~12!

f3,qW k•e•¹W hk50, ~13!

fW 4,qW k2pW k50, ~14!

nW •qW kuG50, ~15!

hk>h0 , ~16!

zk>0, ~17!

wherez is a slack variable, andnW is a normal unit vector to
the boundaryG. Hereafter the indexk, which denotes the
current time, will be omitted in order to simplify notations

Now the functional~10! and the constraints~11!–~14! are
differentiable with respect to the vectorqW while the new
variablepW enters into the above equations locally. Therefo
a block-relaxation method can be applied to solve the m
mization problem~10!–~17!.

In this study we used the method of an augmented
grangian@10#, which is a combination of the duality an
penalty methods. Let us introduce the following Lagrang
multipliersl, m1 , m2 , andnW , which correspond to the con
straints ~11!–~14!, respectively. Then the following aug
mented Lagrangian can be associated with the minimiza
problem~10!–~17!:
L,F1E
V

lf11r 1f1
21m1f21r 2f2

21m2f31r 2f3
21nW •fW 41r 3f4

2dV

5E
V

Dt~1/21r 1!~¹W •qW !21@2r 1h2~112r 1!~hk211wDt !1l#¹W •qW 1r 3uqW 2pW u21nW •~qW 2pW !

1gupu1r 2@~qW •¹W h1gupu1z!21~qW •e¹W h!2#1m1~qW •¹W h1gupu1z!1m2~qW •e•¹W h!dV, ~18!
wherer i are the penalty parameters.
At each iteration of the augmented Lagrangian algorit

the following problem of minimization is solved:

L ——→
~qW n11,pW n11,hn11,zn11!

min,

with the constraints~15!–~17!.
The Lagrangian multipliers are kept constant. When

minimum of L is attained, the Lagrangian multipliers a

a

recalculated as follows~for details see@10#, p. 402!:

ln115ln1ur 1@h2hk212~w2¹W •qW !Dt#,

m1
n115m1

n1ur 2@qW •¹W h1gupu1z#, 0,u<2

m2
n115m2

n1ur 2~qW •e•¹W h!,
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nW n115nW n1ur 3~qW 2pW !,

wheren is the number of iterations. In numerical calcula
tions the parameteru was chosen in the interval@0.8,1.2#.

As noted above, a minimum of the functional~18! can be
determined iteratively by sequentially solving the parti
minimization problems with respect toh, qW , pW , andz, respec-
tively:

qW 5 argmin
qW : qWnuG50

L, ~19!

h5argmin
h:h>h0

L. ~20!

When the sandpile heighth is determined from the solu-
tion of the minimization problem~20! the minimization
problem~19! is solved again with the new value ofh. This
procedure of successive solving minimization problem
~19!–~20! is repeated until convergence. Then the one-po
minimization problem,

S pWz D5argmin
pW ,z:z>0

L ~21!

FIG. 1. Pile growth on a support surface (a) from a plane uni-
form source.
l

s
t

can be solved analytically. The detailed numerical algorith
for the solution of the minimization problems~19!–~21! is
described in Appendix A.

The minimization problems~19!–~20! are solved repeat-
edly with the new values ofpW andz, etc., until convergence
Note that the minimization problems~19! and ~20! are the
problems of quadratic minimization and, therefore, they c
be solved using the standard methods~see Appendix A!.

The penalty parametersr i were chosen from the interva
@1,10#. At all steps of the numerical procedure the followin
termination criterion was used:

S E
V

~qW n2qW n21!2dV D 2<1023.

Notably, whenu¹W h0u<g everywhere, the slack variablez
and the constraints~11!–~13! and~16! are not required. Thus
the minimization problem can be solved with respect toqW
and after that the sandpile heighth can be calculated from
the mass conservation equation~8!.

V. WATER TRANSPORT

It was noted by Prigozhin@4# that sandpiles and river
networks are similar dissipative systems. Leth0(x,y) be the
land surface andrw(t,x,y) the intensity of precipitation. As-

FIG. 2. Pile growth on a support surface (a) from a circle uni-
form source.
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55 5789NUMERICAL SOLUTIONS OF THE VARIATIONAL . . .
sume that water does not evaporate and does not penet
the soil but just flows down the slopes and forms lakes
local depressions of the land surface. These lakes can
viewed as piles with zero angle of repose. Therefore in th
limiting case of the zerog the model of heap growth on a
rigid support surface describes water transport through t
river networks and the formation of lakes.

Since wheng is zero the friction forces vanish, the addi-
tional variablepW and the constraints~14! are not needed.

Since the water flow in the lakes is not confined to a thi
surface layer only, the assumptions of our model are n
valid. However, the flow in lakes does not affect the hor
zontal water profile. Therefore, in order to specify a lak
surface we need only an integral water balance over t
whole lake, and a detailed description of the flow in lakes
not required. Note that the solution for a flow fieldqW in lakes
is invariant with respect to addition of an arbitrary solenoida
field qW̃ . The latter was the reason for the indefinite growth o
the magnitudes of the water fluxes, which occurred in som
computations. In order to prevent such uncontrollable swir
ing of water in the lakes the following penalty term was
added to the functional~10!:

E
V
r 4~qW

n2qW n21!2dV,

FIG. 3. Pile growth on a support surface (a) from a circle uni-
form source.
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which is the square of the difference between the value of
flux vector at a current iteration and at the previous on
When the minimization problem~10!–~13!, ~15!–~17! is
solved the vectorqW n21 is replaced byqW n and the calculations
are repeated. The penalty parameterr 4 is chosen in the in-
terval @0.05–0.1# and was sufficient to provide the stability
of the numerical algorithm. In the numerical calculations t
following modified termination criterion was used:

S E
V/V1

n
~qW n2qW n21!2dV D 1/212S E

V1
n
~hn2hn21!2dV D 1/2

<1023,

whereV1
n is the area of the lakes at a current iteration.

VI. NUMERICAL RESULTS AND DISCUSSION

The model developed for the sandpile evolution, wa
transport, and formation of lakes in the form of the vari
tional equations allows an effective computational realiz
tion using the numerical procedure described above.

In order to verify the proposed algorithm we studied san
pile growth on the rigid support surfaces with sharp vari
tions of the profile and with a slope greater thang. The
shapes of growing sandpiles at several times~t50, 1

3gL/w,

FIG. 4. Pile growth on a support surface (a) from a concentric
ringlike uniform source.
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2
3gL/w, gL/w, whereL is a characteristic size of the sup
port! are presented in Figs. 1–5. In the calculationsL andg
were set equal to unity. Inspection of these figures shows
the shape of the piles depends on the shape of the plat
and on the distribution of the density of the source of gra
lar material. The pile is stable until the inclination of th
platform is less than the angle of repose of the granular
terial. When the foot of the pile reaches a location at
support surface with the inclination greater than the rep
angle, the granular material slides down the slope and de
its at the regions of the platform that have angles of incli
tion less than the repose angle. Note that the shape of the
surface controls only the direction of the material flux, wh
its magnitude depends on the integral mass and energy
ance.

We analyzed also water transport between two comm
cating reservoirs. The results of the calculations are p
sented in Fig. 6. A point source of water is located above
right reservoir. The horizontal water profile in the right re
ervoir rises until water starts to spill into the left reservo
Thereafter all the water poured into the right reservoir flo
into the left reservoir.

Thus it can be concluded that the suggested model

FIG. 5. Pile growth on a support surface (a) from a shifted
ringlike uniform source.
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sandpile dynamics allows one to predict a heap growth on a
arbitrary rigid support surface under the action of the arbi
trary distributed external sources of granular material an
formation of lakes at the arbitrary landscapes.

APPENDIX: NUMERICAL PROCEDURE
FOR MINIMIZATION OF THE AUGMENTED

LAGRANGIAN „18…

Here we describe the procedure for minimization of the
functional ~18! in more detail. The minimization problem
~19! yields the following Euler equation, which is linear with
respect toqW :

Dt~112r 1!¹W ¹W •qW 22~r 31r 2u¹W hu2!qW

5¹W @2r 1h2~112r 1!~hk211wDt !1l#22r 3pW 2nW

1~m112r 2!~qW •¹W h1gupu1z!

3¹W h2~ṁ212r 2!~qW •e•¹W h!¹W h•e

50, ~A1!

FIG. 6. Water transport through two communicated reservoirs
from a point source located above the right reservoir.
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with the fixed values of all other variables and the bound
conditions ~15!. The above equations were solved by t
method of alternating directions with over-relaxation.

The sandpile heighth is determined as max@h̃,h0#, where
h̃ is the solution of the following elliptic type equation:

2r 1h̃2¹W •$qW @2r 2~qW •¹W h̃1gupW u1z!1m1#2e•qW @2r 2~qW •e

•¹W h̃!1m2#%52r 1~hk211wDt2¹W •qW Dt !2l, ~A2!

with the boundary conditionsqt(qt]h̃/]n1m2)ur50.
The differential equation~A2! is the Euler equation for

the minimization of the functional~18! with respect toh̃. In
this study Eq.~A2! was solved by the point over-relaxatio
method. The relaxation parameterv in solving Eqs.~A1! and
~A2! was chosen from the interval@1.2,1.6#.

The one-point minimization problems with respect topW
andz can be solved as follows. Euler equations for minim
zation of the Lagrangian~18! with respect topW andz read as
follows:

2r 2~qW •¹W h1gupu1z!
pW

upu
1g~11m1!

pW

upu
12r 3pW

52r 3qW 1nW ,

2r 2~z1qW •¹W h1gupW u!1m150.

The first equation implies thatpW 5pPW /uPu, wherePW 52r 3qW
1nW .

The above equations can be rewritten as follows:

p5 1
2 $uPu2g@12m112r 2~qW •¹W h1z!#%/~r 2g

212r 3!,

z52qW •¹W h2gp2m1 /~2r 2!.
-

y

-

In order to satisfy the constraintsp>0 andz>0 these vari-
ables must be chosen as follows. Ifp>0 andz>0 the above
equations can be solved immediately:

p5~ uPu2g!/~2r 3!,

z52qW •¹W h2gp2m1 /~2r 2!.

If p,0 and z>0, the minimum is located at thep axis.
Therefore

p50 and z5max@0,2qW •¹W h2m1 /~2r 2!#.

If p>0 and z,0, the minimum is located at thez axis.
Therefore

p5max@0,12 @ uPu2g~12m112r 2qW •¹W h!#/~r 2g
212r 3!

and z50.

If p,0 andz,0 the minimum can be either at thep axis or
at thez axis:

p5 1
2 $uPu2g@112r 2~qW •¹W h2m1!#%/~r 2g

212r 3!

and z50 ~A3!

or

p50 and z52qW •¹W h2m1 /~2r 2!. ~A4!

If Eqs. ~A3! and~A4! do not provide non-negative values o
p andz, then

p50 and z50.

All calculations were performed on a uniform rectangu
60360 mesh by a finite-difference method on a simple fiv
point stencil.
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