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Numerical solutions of the variational equations for sandpile dynamics
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A variational form of the energy conservation equation is applied to derive a system of variational inequali-
ties describing the dynamics of sandpile growth on an arbitrary rigid support surface due to an external source
of granular material. Water transport through the river networks and formation of lakes is also investigated as
a limiting case of the sandpile evolution problem. A numerical algorithm is suggested for the solution of the
obtained system of variational inequalities. The developed numerical procedure is applied for the investigation
of the pile growth on a number of rigid support surfaces, water transport, and formation of lakes.
[S1063-651%97)12005-0

PACS numbds): 83.70.Fn, 46.16:z, 05.60+w

I. INTRODUCTION Il. A MODEL FOR SANDPILE GROWTH
ON AN ARBITRARY RIGID SUPPORT SURFACE

. The dynamics of sand_piles were studigd quite extensively Generally the problem of the sandpile dynamics is formu-
in the past, both theoretically and experimentaige, €.9.. |50q as foilows. Let a cohesionless granular material with
Refs.[1-3]). Most of these studies investigate the details Ofbulk densityp be poured down onto a rigid support surface
the pile surface relaxation near a stable configuration by avagith 4 profilez=ho(x,y), where &,y) e Q and forms a heap

lanches. Less attention was paid to the more complicategiih a free boundarg=h(x,y). All the material lie above
problem of determining the evolution of the mean surface one support surface, i.e.,

a pile growing on an arbitrary rigid support surface due to an

external source of granular material. This problem arises in h=h,, 1

numerous technological applications and naturally occurring ) )

phenomena, e.g., bulk solids handling, geomorphology, etc.. The mass Of. the material that falls on the adéad_urmg
The first successful continuum model of pile formationt”mfa mte(;vald.t IS ;;wr(]t,x,y)dt dIQ' wherepfw(t,x,yl) Is the ial

that provides quantitative results was proposed by Prigozhiﬁl}f‘r ace density of the external source of granular material.

[4,5]. In these studies the inertial effects were neglected; i.e € problem s to dgtermme the time dependence of the
the system was driven by gravitational and frictional forces‘he'ght of a granular. plI@('g,x,y). .
Assume that the intensity of the source is small. Then the

ong/. Thde ml?themlatl_cal n}ode_l of Zeap e(;/olutlon was _pr9V81I0W of the granular material occurs only in a thin boundary
to be a dual formulation of a time-dependent quasivariationglyy e and does not involve the stationary bulk of the material
inequality. [2]. Denote the horizontal projection of the mass flux density

In spite of its elegance and mathematical irreproachabilityper unit area bypq and the horizontal component of the
this method has a limited range of applications. The inequalinteg_ral mass flux density per unit area _Q ie. g
ity used in[4,5] is a variational one only if the support sur- — 904t Lo

face of the pile is inclined at an a_ngle less thgn_ the angle of In the present work we consider the simplest model of the
repose everywhere. In the opposite case, this inequality bgge | incompressible material with Coulomb friction 1&#.
comes a quasivariational inequality, which requires timey can he argued that such a restrictive assumption ignores
consuming iterative treatment. o __ most of the essential properties of the real granular materials
In [6] we suggested a more general variational descriptio; _3). However, the concept of the ideal material with Cou-
of sandpile evolution based on the Hamilton principle of thejomp friction has been extensively used in engineering for
stationary action. The application of the principle of the sta-gimost two centuries. It plays the same fundamental role in
tionary action allows one to derive a system of the variathe mechanics of granular media as the Hook’s law in solid
tional inequalities describing sandpile evolution. In themechanics. Therefore we believe that the analysis of a pile of
present investigation we developed a numerical procedurgranular material using the Coulomb friction law can form a
for the solution of these variational inequalities. The devel-hasis for more general theory.
oped procedure is applied for the investigation of the pile  sjnce the bulk density is a constant, the mass conservation
growth on a number of rigid support surfaces. Water transSigyw can be written as follows:
port through the river networks and formation of lakes is also

investigated as a limiting case of the sandpile evolution prob- dh >
lem. E=—V~q+w. (2

Assume that the domaif2 is bounded by the imperme-
*Electronic address: elperin@menix.bgu.ac.il able boundany, i.e.,
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qn|r=0. ©) It is known that the sandpile avalanches occur if and only
if the pile surface is inclined at an angle equal to the angle of
Note that all the derivations are valid also for the completelyreposeqay:
permeable boundary, i.e., for outflow boundary conditions: R
|Vh|=tan ag=1.
h(t,x,y)[r=holr.
Therefore it is reasonable to assume that the friction force
Since the flow rate of the material is assumed to be smallz

one can neglect the inertia of the grains and suppose that thFe 's determined by the following equation:

system is driven by gravitational and frictional forces only. . i
The expression for the surface density of the potential energy F=1vy9 H
of the sandpile reads as follows: q
h o9 which implies thatVh= — yd/|qg| and|Vh|=y.
U=pgfO zdz= > h2, Note that the above equations are valid onlyhifh.

The situation when the granular material slides down the
support surface, i.e., whelm=h,, requires a special treat-

whereg is the acceleration of gravity, gwent. We assume that in this case the granular flow is also

Assume that the equations for the surface density of th -
dissipation rate of energy in the pile read as follows: parallel toVh:

Szpﬁq, q'e~€h20 (6)

where the expression for the friction force per unit mass of gvhere components of tenserin Cartesian coordinates;,

. = . g :_9212_1, ell= 922:0.
flowing granular layeF will be specified below. Suppose also that granular material does not slide at the

part of the support surface which is inclined at the angle less

FOR SANDPILE DYNAMICS

Using the synchronous variations of the pile heigit G=0 for |[Vh[<y.

and of the horizontal component of the integral fldi@, the
variational form of the energy conservation law can be writ-
ten as follows(for details seg6]):

Since qm—ﬁh, the latter condition can be written as fol-
lows:

. d-Vh+v|q|<0. 0
pgfhﬁh dQ=—pf F.-5Q dQ. (4
Q Q It is clear that the constraint$) and (7) are satisfied auto-
. matically whenh>h,.
It is clear that the variationgh and 6Q are not indepen-
dent since the virtual material flux affects the free boundary IV. NUMERICAL ALGORITHM

of the pile. Rewriting the law of mass conservation with ) ) ]
respect to the variations we obtain In this section we demonstrate that the time dependent

variational equatior{4) can be solved by reduction to a se-
sh=—V. 56 (5) quence of the steady-state minimization problems. We re-
strict our attention to the case that is continuous with respect
Substituting Eq(5) into Eq.(4) and using Gauss theorem t0 the space variables and is discrete with respect to time.
we arrive at the following equation of forces balance: After discretization in time Eq(2) and the formula for
6Q at timekAt read as follows:
gVh=—-F. .
hk: hk_1+ (W_ R qk)At,
Determining the friction forcer requires a detailed de- .
scription of the friction mechanisms in a granular material. 8Qy= 5G,At. (8)
Such mechanisms were discussed8B], and it was con-
firmed that forces acting on a layer of sand sliding down a Substitute Eqs(8) into the variational equatio). Then
rough wedge correspond to the Coulomb-like friction; i.e.,after simple manipulations we obtain the following minimi-

Focli/|u|, whered is the velocity of granular material. zation problem at timéAL:
On the other hand, if the inertia of the granular flow can

be neglected, it is reasonable to assume that the granular f {E (ﬁ.qk)2+y|qk|
material slides in the direction of the steepest descent at the 2
pile surface:

—(hk_1+WAt)V*~dk]dQ—> min, 9)

Gor — Vh=F =g g
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which is to be solved under the constraifi, (2), (6), (7),
and(8).

It must be noted that the time incremeXit appears in the
expression for the functional®) near the quadratic term. " 2
Therefore the time incremedtt multiplies the second order b2=q- Vhit vlpil + 4=0, (12)
derivative in the Euler equations for the functiorifl) [see
Eq. (A1), Appendix Al. WhenAt=0 the Euler equation for .
the functional (9) yields the pile equilibrium condition d32Gy-e- Vh=0, (13
|§hk_1|=y. The latter condition implies that the pile is
stable at the K—1)th time step. Therefore, in spite of the
small multiplier near the high order derivative, the Euler ds2G—P=0, 14
equation is not singular since the small ternAt in the
functional (9) compensates the deviation from the equilib-
rium state caused by the arrival of the new portion of granu- A-Gr=0, (15
lar material with masgpwAt per unit surface.

Because of a very large number of variables the use of the
classical gradient-type methods for solving the above mini- he=ho, (16)
mization problem is inappropriate. It was concluded 10]
that a more effective approach is to employ a block-
relaxation method that takes into account the particular struc- 40, (17
ture of the problem to be solved. However, an essential dif-
ficulty in applying a relaxation method arises from the

nondifferentiable ternig|. Note thatq enters into the equa- where( is a slack variable, and is a normal unit vector to
tions not only through its absolute vallgg but also through  the boundanT'. Hereafter the index, which denotes the
its derivatives, i.e., nonlocally. In such a case a relaxationyyrrent time, will be omitted in order to simplify notations.
procedure will not converge to the solution of the minimiza-  Now the functional10) and the constraint&l1)—(14) are
tion problem[10]. In order to avoid this problem we intro- gjfferentiable with respect to the vectdr while the new
duce an additional variablg (5= ), as done i{10] for the  yariable enters into the above equations locally. Therefore
investigation of the Bingham fluid flow. Replacing the term g plock-relaxation method can be applied to solve the mini-
|g| by |p| we obtain the following minimization problem:  mization problem(10)—(17).
At In this study we used the method of an augmented La-
(DéJ' [_ (€~ﬁk)2+7|ﬁk| grangian[10], which is a combination of the duality and
al 2 penalty methods. Let us introduce the following Lagrangian
multipliers \, x4, u», andv, which correspond to the con-
—(hk,1+WAt)§-ﬁdeH min, (10) straints (11)—(14), respectively. Then the following aug-
ap mented Lagrangian can be associated with the minimization
problem(10)—(17):

$12h—h 1—(W—V-G)At=0, (11)

LéCID—Fjﬂ)\¢1+rl¢f+ul¢2+r2¢§+,u2¢3+r2¢§+17-<;S4+r3¢421dﬂ
:f AL(L/24 1) (V-G)2+[2r ;h— (1421 1) (he_ 1+ WAL + NIV - G+ 5|G— P2+ - (G- P)
Q

+7]pl+ 12l (G- Vh+y|p| + )2+ (G-eVh) 2]+ 1(G- Vh+ y|p|+ ) + uo(d- e Vh)dQ, (18)

wherer; are the penalty parameters. recalculated as followéor details se¢10], p. 402:
At each iteration of the augmented Lagrangian algorithm

the following problem of minimization is solved: N erl[h—hk_l—(w—ﬁ-G)At],

L - min,

n+1:n+1,n+1 n+1l >
@+ hantd ot M2+1=M2+ or,[g-Vh+y|p|+¢], 0<6<2
with the constraint$15)—(17).

The Lagrangian multipliers are kept constant. When a nil L =
minimum of L is attained, the Lagrangian multipliers are Mo “=uot Orp(g-e-Vh),
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FIG. 1. Pile growth on a support surfaca)(from a plane uni-

FIG. 2. Pile growth on a support surfaca)(from a circle uni-
form source.

form source.

P I=5"+ 0ra(G—P), can be solved analytically. The detailed numerical algorithm
for the solution of the minimization problem49)—(21) is

wheren is the number of iterations. In numerical calcula- descrlbeq In Appgndm A.
tions the paramete# was chosen in the interv@d.8,1.4. The_ minimization problems19)—(20) are_solved repeat-
As noted above, a minimum of the functioriaB) ,can be edly with the new _va!ue; gf and{, etc., until convergence.
determined iteratively by sequentially solving the partial E:)c;[t?let?nzt é??qlggrlggiléarg?nr;rr?irzc;tt)ilgmir?zj at%ifé%rgr?h?;can
trlr\1I|2||m|zat|on problems with respect kg g, p, andg, respec- be solved using the standard methdsise Appendix A
y The penalty parameters were chosen from the interval
[1,10]. At all steps of the numerical procedure the following

4= arglminL, (19 termination criterion was used:
qg: qn r=0
2
" H2d0 | <1072,
h=argmiriL_. (20 ( Q(q )
h:h=hq

Notably, when Vhg|< y everywhere, the slack variabfe
When the sandpile heiglit is determined from the solu- and the constraintd 1)—(13) and(16) are not required. Thus
tion of the minimization problem(20) the minimization the minimization problem can be solved with respecijto
problem(19) is solved again with the new value bf This  and after that the sandpile heigihtcan be calculated from
procedure of successive solving minimization problemshe mass conservation equati(3).
(19)—(20) is repeated until convergence. Then the one-point

minimization problem, V. WATER TRANSPORT
- It was noted by Prigozhiri4] that sandpiles and river
(? = argmirL (21)  networks are similar dissipative systems. bgfx,y) be the

B.0:=0 land surface angw(t,x,y) the intensity of precipitation. As-
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FIG. 4. Pile growth on a support surfaca)(from a concentric
FIG. 3. Pile growth on a support surfaca)(from a circle uni-  ringlike uniform source.

form source.

h q 44 which is the square of the difference between the value of the
sume that water does not evaporate and does not penetrafg, yector at a current iteration and at the previous one.

the soil but just flows down the slopes and forms lakes a{yhan the minimization problem10—(13). (15)—(17) is
local depressions of the land surface. These lakes can k%%lved the vectog" ! is re&acednéﬁz a(nd){h(e c?ellc(u;)tions
\(ley\{ed as piles with zero angle of repose. Therefore in th%re repeated. The penalty paramateiis chosen in the in-
I|_m_|(;|ng case of tfhe zedrcay th_g model of heap gromth onhahterval [0.05-0.1 and was sufficient to provide the stability
fgid support surface describes water transport through thg¢ i nymerical algorithm. In the numerical calculations the

river networks apd the forma_thn of lakes. . . following modified termination criterion was used:
Since wheny is zero the friction forces vanish, the addi-

tional variablep and the constraint&l4) are not needed. 12
Since the water flow in the lakes is not confined to a thin ( f (G"-g""hH2dQ| +2

surface layer only, the assumptions of our model are not

valid. However, the flow in lakes does not affect the hori- <1073,

zontal water profile. Therefore, in order to specify a lake

surface we need only an integral water balance over thghere)] is the area of the lakes at a current iteration.

whole lake, and a detailed description of the flow in lakes is

not required. Note that the solution for a flow figjdn lakes

is invariant with respect to addition of an arbitrary solenoidal

field §. The latter was the reason for the indefinite growth of  The model developed for the sandpile evolution, water

the magnitudes of the water fluxes, which occurred in soméransport, and formation of lakes in the form of the varia-

computations. In order to prevent such uncontrollable swirltional equations allows an effective computational realiza-

ing of water in the lakes the following penalty term was tion using the numerical procedure described above.

n
1

1/2
f (hn—hnl)2d9>
0]

VI. NUMERICAL RESULTS AND DISCUSSION

added to the functiongd[L0): In order to verify the proposed algorithm we studied sand-
pile growth on the rigid support surfaces with sharp varia-

j ra(G"—g"1)2dQ, tions of the profile and with a slope greater thanThe

) shapes of growing sandpiles at several tirftes0, 3yL/w,
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FIG. 6. Water transport through two communicated reservoirs

FIG. 5. Pile growth on a support surfaca)(from a shifted from a point source located above the right reservoir.

ringlike uniform source.
sandpile dynamics allows one to predict a heap growth on an

2 . . arbitrary rigid support surface under the action of the arbi-
syL/w, yL/w, whereL is a characteristic size of the Sup- oy gistributed external sources of granular material and
port) are presented in Figs. 1-5. In the calculatibnandy  t5rmation of lakes at the arbitrary landscapes.

were set equal to unity. Inspection of these figures shows that

the shape of the piles depends on the shape of the platform

and on the distribution of the density of the source of granu- APPENDIX: NUMERICAL PROCEDURE
lar material. The pile is stable until the inclination of the FOR MINIMIZATION OF THE AUGMENTED
platform is less than the angle of repose of the granular ma- LAGRANGIAN (18)

terial. When the foot of the pile reaches a location at the
support surface with the inclination greater than the repose
angle, the granular material slides down the slope and depo
its at the regions of the platform that have angles of inclina- A
tion less than the repose angle. Note that the shape of the pif§SPect tad:
surface controls only the direction of the material flux, while
its magnitude depends on the integral mass and energy baA—t(
ance.

We analyzed also water transport between two communi-
cating reservoirs. The results of the calculations are pre-
sented in Fig. 6. A point source of water is located above the

Here we describe the procedure for minimization of the
unctional (18) in more detail. The minimization problem
19) yields the following Euler equation, which is linear with

1+ 2r1)55-ﬁ—2(r3+ r2|€h|2)q

=V[2r;h—(1+2r;)(he_;+WAt) +N]—2rsp—

right reservoir. The horizontal water profile in the right res- (2006 Vh+ n
ervoir rises until water starts to spill into the left reservoir. (11 2)(d vipl+8)
Thereafter all the water poured into the right reservoir flows xﬁh—(p2+ 2r5)(G- e-ﬁh)ﬁh-e

into the left reservoir.
Thus it can be concluded that the suggested model for =0, (A1)
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with the fixed values of all other variables and the boundaryin order to satisfy the constraings=0 and{=0 these vari-
conditions (15). The above equations were solved by theables must be chosen as followspl:0 and{=0 the above
method of alternating directions with over-relaxation. equations can be solved immediately:

The sandpile height is determined as méh,], where bl _
=~ : . L : p=(|P[=v)/(2r3),
h is the solution of the following elliptic type equation:

{=—G-Vh—yp—p,/(2r,).

— . If p<0 and =0, the minimum is located at thp axis.
-Vh)+ us]}=2r(h_1+wAt—V-§At)—\, (A2)  Therefore

2r;h—V-{d[2r (G- Vh+ y|p| + )+ ui]— e G[2r (G- e

with the boundary conditionqr(qfﬁ‘ﬁ/an+,u2)|r=0. p=0 and gzma{O,—q-ﬁh—Mll(Zrz)].
The differential equatiortA2) is the Euler equation for

the minimization of the functiongll8) with respect tch. In If p=0 and{<0, the minimum is located at th¢ axis.

this study Eq.(A2) was solved by the point over-relaxation Therefore

method. The relaxation parametein solving Eqs(A1) and _ 1 B . e 2,

(A2) was chosen from the intervl.2,1.6. p=ma{0,3[[P|—y(1—p1+2r,G-Vh) 1/ (roy°+2r3)
The one-point minimization problems with respectgo and =0,

and{ can be solved as follows. Euler equations for minimi-
zation of the LagrangiafiL8) with respect tqd and{ read as  If p<<0 and{<0 the minimum can be either at tipeaxis or

follows: at the{ axis:
e p P X p=3{|P|— Y[ 1+2r,(G- Vh— uo) I}/(ro92+2r3)
20,6V he yIpl+0) 1+ (L o) [ +2r5P ? ? v :
and /=0 (A3)
=2r3(j+17, or
2rp(§+4-Vh+v]p|) + x,=0. p=0 and{=—G Vh—pu,/(2r,). (Ad)

The first equation implies thgi=pP/|P|, whereP=2r,4 If Egs. (A3) and(A4) do not provide non-negative values of
+v. p and{, then
The above equations can be rewritten as follows:

p=0 and/{=0.
p=3{|P| = y[1—u1+2ry(4-Vh+ )T} (ry*+2ry), All calculations were performed on a uniform rectangular
. 60X 60 mesh by a finite-difference method on a simple five-
{=—q§-Vh—yp—u/(2r,). point stencil.
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